eling atoms to address
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Haber-Bosch Process

(ammonia fertilizer) 8

N, + 3H, — 2NH-
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The Mittasch approach

Uranium Osmium

$$9$

Oesper, R. E. "Alwin Mittasch." Journal of Chemical Education 25.10 (1948): 531.



The Mittasch approach

Uranium Osmium

$$9$

20,000 experiments
>2500 compositions

Oesper, R. E. "Alwin Mittasch." Journal of Chemical Education 25.10 (1948): 531.
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talySt noun

Material used to increase the rate of a chemical
reaction without being consumed in the process.



Toyota Mirai

Anode T

Membrane Cathode

Catalyst

Fuel Cell






Goldilocks...

®

Too strong... Too weak...




Goldilocks...

Justright...

$$$




w are catalysts screened?




1. Place adsorbate near the catalyst

2.Relax atom positions

a. Compute forces
b. Update atom positions
c. Repeat

3.Use relaxed energy to estimate
reaction rate trends




A single relaxation using
DFT* takes ~1 day

...billions of possibilities :(

*Density Functional Theory



cing computation from 1 day to 1 secon

Al* to the rescue



Open Catalyst Project

Using Al to model and discover new
catalysts to address the energy challenges
posed by climate change.

O\ Meta

Carnegie Mellon University

UNIVERSITY OF
¥ TORONTO

OpenCatalystProject.org



Training data

OC20 and OC22 datasets

> 140M training examples
> 500M hours of compute!

Open sourced

Creative Commons Attribution 4.0 License

The Open Catalyst 2020 (OC20) Dataset and Community Challenges,
Chanussot et al., 2020




Data
Input: 0

3D atom positions and atomic numbers ‘ adsorbate

0000 -




Data

Input:

3D atom positions and atomic numbers

Output:

Energy and 3D atom forces




Graph Neural Network




Graph Neural Network

Node = Atom

Nodes




Graph Neural Network

Node = Atom
Edge = Neighbor

Edges
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Results: Relaxed energy

Relaxed Energy MAE (eV)
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Results: Relaxed energy

Relaxed Energy MAE (eV)
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Relaxations

24 ¢ —— eSCN
DFT

T T T T
0 100 200 300 400

optimization step

Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs, Passaro and Zitnick, 2023



reening a new material...




Bulk materials

How do you slice the material?

34



Bulk materials

How do you slice the material?
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Bulk materials

How do you slice the material?
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Bulk materials

How do you slice the material?
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Bulk materials

How do you slice the material?

38



Bulk materials

~90 possible slices!

ke

39



Adsorbates

~100 different initial placements
for each adsorbate.

~5 adsorbates of interest

Y ooymegod Sy




How many relaxations do we need?

90 slices x 5 adsorbates x 100 placements = 45,000 relaxations!

=2 788

DFT =120 CPU* years!

ML + DFT = 2.5 GPU days + 70 CPU* days

*
AdsorbML: Accelerating Adsorption Energy Calculations with Machine Learning, Lan et al., 2022 12 cores



How many known materials are there?

Materials Project

155k

A

Stable in reaction
conditions

6k

https://materialsproject.org/



Generative Al!

Sailboat sailing on a sunny day in a A confused grizzly bear in calculus class A ballerina performs a beautiful and

mountain lake, highly detailed difficult dance on the roof of a very tall
skyscraper; the city is lit up and glowing
behind her

https://materialsproject.org/

https://makeavideo.studio/
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You pour in 20% platinum and
80% copper what do you get?

Which crystal structure?
Which facets?

Does it create a uniform material?




UNIVERSITY OF

TORONTO




ect Air Capture




Direct Air Capture

IEA Net Zero by 2050
1000

>1B ton / year
750

500

CO2 Captured (MTon/year)

230

2020 2030 2040 2030
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OpenDAC pt

e ' CO, depleted air

®

Sorbent
-

CO, rich air



OpenDAC23 G-ecgl_lr(;%ila:=

The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture, Sriram et al., 2023



OpenDAC23

(a) 2.0

L ®

1.0 -

0.5-

Eads(H,0), DFT / eV
S o
w o

I
-
o

-1.5 -

-2.0

—2.0

Pristine
Promising Weak CO, adsorption
DITYOW
ODIXEGe—g ¢ .
. ¢ . .;‘.
. - BIMDIL
H,O binds stronger than CO,
-15 -1.0 -05 00 05 10 15

The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture, Sriram et al., 2023

2.0

Georgia
Tech

!M

=



Datacenters




What if we interacted with Als for 1 billion hours per day?

Let’s assume it takes one A100
to power an Al.

An A100 requires 400W plus a
PUE of 1.1...

...results in 160 TWh of power
required per year.




160 TWh (scenario 1)

0.5% of the world’s electricity
Roughly doubles the power required by datacenters worldwide.

@ $0.08 per kWh = $12.8 Billion

0.86 pounds of CO, are emitted per kWh in the US
/70 million metric tons of CO,, per year

@ $200 per ton = $14 Billion



160 TWh (scenario 2)*

@ $0.02 per kWh for solar = $3.2 Billion

0 pounds of CO, are emitted per kWh of solar power in the US

$26.8 Billion vs. $3.2 Billion

(scenario 1) (scenario 2)

*only runs for ~8 hours a day



Renewable energy storage
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Renewable energy storage

> BEES

Batteries

» 7

’ {EleCtrOIySis} Hydrogen { Fuel Cell } ) ? %




Scenario A (high electricity costs)



Scenario A (high electricity costs)
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Scenario A (high electricity costs)

» BENE

Batteries

90% > TZ%

40%
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Scenario A (high electricity costs)

> 580

Batteries

90% , 71 _ %

~uff

40%




Scenario B (ow electricity costs, short-term storage)



Scenario B (ow electricity costs, short-term storage)

Batteries

) [j;} Hydrogen Fuel Cell 4 ? | %




Scenario B (ow electricity costs, short-term storage)




Scenario C (low electricity costs, long-term storage)



Scenario C (low electricity costs, long-term storage)

» 3

Batteries

» | Electrolysis Hydrogen Fuel Cell

_ﬁ%




More areas...

1. Batteries

2.Proteins

3.Drug discovery
4.Hazardous waste cleanup
5....




Helped keep Germany supplied with
munitions during World War |.

The overuse of ammonia fertilizers
has led to ocean dead zones.

(o)

4.8X

Population (billions)
N

N

0
1900 1920 1940 1960 1980 2000 2020




ML basics for
modeling atoms

0609
®5€S9PD

Open Catalyst YouTube

b

:-.. <

OpenCatalystProject.org

A
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